Comparison of Graph Cuts with Belief Propagation for Stereo, using Identical MRF Parameters

نویسندگان

  • Marshall F. Tappen
  • William T. Freeman
چکیده

Recent stereo algorithms have achieved impressive results by modelling the disparity image as a Markov Random Field (MRF). An important component of an MRF-based approach is the inference algorithm used to find the most likely setting of each node in the MRF. Algorithms have been proposed which use Graph Cuts or Belief Propagation for inference. These stereo algorithms differ in both the inference algorithm used and the formulation of the MRF. It is unknown whether to attribute the responsibility for differences in performance to the MRF or the inference algorithm. We address this through controlled experiments by comparing the Belief Propagation algorithm and the Graph Cuts algorithm on the same MRF’s, which have been created for calculating stereo disparities. We find that the labellings produced by the two algorithms are comparable. The solutions produced by Graph Cuts have a lower energy than those produced with Belief Propagation, but this does not necessarily lead to increased performance relative to the ground-truth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Markov Models for Image Labeling

Markov random field MRF is a widely used probabilistic model for expressing interaction of different events. One of the most successful applications is to solve image labeling problems in computer vision. This paper provides a survey of recent advances in this field. We give the background, basic concepts, and fundamental formulation of MRF. Two distinct kinds of discrete optimization methods, ...

متن کامل

Toward Global Minimum through Combined Local Minima

There are many local and greedy algorithms for energy minimization over Markov Random Field (MRF) such as iterated condition mode (ICM) and various gradient descent methods. Local minima solutions can be obtained with simple implementations and usually require smaller computational time than global algorithms. Also, methods such as ICM can be readily implemented in a various difficult problems ...

متن کامل

Efficiently Learning Random Fields for Stereo Vision with Sparse Message Passing

As richer models for stereo vision are constructed, there is a growing interest in learning model parameters. To estimate parameters in Markov Random Field (MRF) based stereo formulations, one usually needs to perform approximate probabilistic inference. Message passing algorithms based on variational methods and belief propagation are widely used for approximate inference in MRFs. Conditional ...

متن کامل

A Machine Learning Approach to Recovery of Scene Geometry from Images

Recovering the 3D structure of the scene from images yields useful information for tasks such as shape and scene recognition, object detection, or motion planning and object grasping in robotics. In this thesis, we introduce a general machine learning approach called unsupervised CRF learning based on maximizing the conditional likelihood. We describe the application of our machine learning app...

متن کامل

Graph-Cut and Belief-Propagation Stereo on Real-World Image Sequences

This paper deals with stereo correspondence search, using graph cuts and belief propagation, for estimating depth maps. The results following different preprocessing steps are evaluated, using the quality of the disparity map. Running times are also investigated. For evaluation purposes, different kinds of images have been used: reference images from the Middlebury Stereo website, synthetic dri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003